Featured Examples¶
Convolutional Neural Network (CNN)¶
DIGITS CNN
Input Shape: (1, 8, 8)
+---------------------+---------+--------------+
¦ LAYER TYPE ¦ PARAMS ¦ OUTPUT SHAPE ¦
+---------------------+---------+--------------+
¦ Conv2D ¦ 320 ¦ (32, 8, 8) ¦
¦ Activation: RELU ¦ 0 ¦ (32, 8, 8) ¦
¦ Dropout ¦ 0 ¦ (32, 8, 8) ¦
¦ BatchNormalization ¦ 4,096 ¦ (32, 8, 8) ¦
¦ Conv2D ¦ 18,496 ¦ (64, 8, 8) ¦
¦ Activation: RELU ¦ 0 ¦ (64, 8, 8) ¦
¦ MaxPooling2D ¦ 0 ¦ (64, 7, 7) ¦
¦ Dropout ¦ 0 ¦ (64, 7, 7) ¦
¦ BatchNormalization ¦ 6,272 ¦ (64, 7, 7) ¦
¦ Flatten ¦ 0 ¦ (3,136,) ¦
¦ Dense ¦ 803,072 ¦ (256,) ¦
¦ Activation: RELU ¦ 0 ¦ (256,) ¦
¦ Dropout ¦ 0 ¦ (256,) ¦
¦ BatchNormalization ¦ 512 ¦ (256,) ¦
¦ Dense ¦ 2,570 ¦ (10,) ¦
+---------------------+---------+--------------+
TOTAL PARAMETERS: 835,338
DIGITS Dataset Model Results¶
DIGITS Dataset Model Loss¶
DIGITS Dataset Model Accuracy¶
MNIST CNN
Input Shape: (1, 28, 28)
+---------------------+------------+--------------+
¦ LAYER TYPE ¦ PARAMS ¦ OUTPUT SHAPE ¦
+---------------------+------------+--------------+
¦ Conv2D ¦ 320 ¦ (32, 28, 28) ¦
¦ Activation: RELU ¦ 0 ¦ (32, 28, 28) ¦
¦ Dropout ¦ 0 ¦ (32, 28, 28) ¦
¦ BatchNormalization ¦ 50,176 ¦ (32, 28, 28) ¦
¦ Conv2D ¦ 18,496 ¦ (64, 28, 28) ¦
¦ Activation: RELU ¦ 0 ¦ (64, 28, 28) ¦
¦ MaxPooling2D ¦ 0 ¦ (64, 27, 27) ¦
¦ Dropout ¦ 0 ¦ (64, 27, 27) ¦
¦ BatchNormalization ¦ 93,312 ¦ (64, 27, 27) ¦
¦ Flatten ¦ 0 ¦ (46,656,) ¦
¦ Dense ¦ 11,944,192 ¦ (256,) ¦
¦ Activation: RELU ¦ 0 ¦ (256,) ¦
¦ Dropout ¦ 0 ¦ (256,) ¦
¦ BatchNormalization ¦ 512 ¦ (256,) ¦
¦ Dense ¦ 2,570 ¦ (10,) ¦
+---------------------+------------+--------------+
TOTAL PARAMETERS: 12,109,578