ztlearn.dl.layers.recurrent package

Submodules

ztlearn.dl.layers.recurrent.gru module

class ztlearn.dl.layers.recurrent.gru.GRU(h_units, activation=None, input_shape=None, gate_activation='sigmoid')[source]

Bases: ztlearn.dl.layers.base.Layer

layer_activation
layer_parameters
output_shape
pass_backward(grad, epoch_num, batch_num, batch_size)[source]
pass_forward(inputs, train_mode=True)[source]
prep_layer()[source]
trainable
weight_initializer
weight_optimizer

ztlearn.dl.layers.recurrent.lstm module

class ztlearn.dl.layers.recurrent.lstm.LSTM(h_units, activation=None, input_shape=None, gate_activation='sigmoid')[source]

Bases: ztlearn.dl.layers.base.Layer

layer_activation
layer_parameters
output_shape
pass_backward(grad, epoch_num, batch_num, batch_size)[source]
pass_forward(inputs, train_mode=True)[source]
prep_layer()[source]
trainable
weight_initializer
weight_optimizer

ztlearn.dl.layers.recurrent.rnn module

class ztlearn.dl.layers.recurrent.rnn.RNN(h_units, activation=None, bptt_truncate=5, input_shape=None)[source]

Bases: ztlearn.dl.layers.base.Layer

layer_activation
layer_parameters
output_shape
pass_backward(grad, epoch_num, batch_num, batch_size)[source]
pass_forward(inputs, train_mode=True)[source]
prep_layer()[source]
trainable
weight_initializer
weight_optimizer

Module contents